Redox flow batteries and their stack-scale flow fields

Author:

Sun Jing,Guo Zixiao,Pan Lyuming,Fan Xinzhuang,Wei Lei,Zhao TianshouORCID

Abstract

AbstractTo achieve carbon neutrality, integrating intermittent renewable energy sources, such as solar and wind energy, necessitates the use of large-scale energy storage. Among various emerging energy storage technologies, redox flow batteries are particularly promising due to their good safety, scalability, and long cycle life. In order to meet the ever-growing market demand, it is essential to enhance the power density of battery stacks to lower the capital cost. One of the key components that impact the battery performance is the flow field, which is to distribute electrolytes onto electrodes. The design principle of flow fields is to maximize the distribution uniformity of electrolytes at a minimum pumping work. This review provides an overview of the progress and perspectives in flow field design and optimization, with an emphasis on the scale-up process. The methods used to evaluate the performance of flow fields, including both experimental and numerical techniques, are summarized, and the benefits of combining diverse methods are highlighted. The review then investigates the pattern design and structure optimization of serpentine- and interdigitated-based flow fields before discussing challenges and strategies for scaling up these flow fields. Finally, the remaining challenges and the prospects for designing highly efficient flow fields for battery stacks are outlined.

Funder

National Natural Science Foundation of China

Joint Research Center on Energy Storage Technology in Salt Caverns Program

Research Grants Council of the Hong Kong Special Administrative Region, China

Shanghai Jiao Tong University

Publisher

Springer Science and Business Media LLC

Subject

Economics, Econometrics and Finance (miscellaneous),Energy (miscellaneous),Environmental Science (miscellaneous)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3