Challenges and perspectives for solar fuel production from water/carbon dioxide with thermochemical cycles

Author:

Chen Chen,Jiao Fan,Lu Buchu,Liu Taixiu,Liu QibinORCID,Jin Hongguang

Abstract

AbstractSolar energy is the most sustainable alternative to fossil fuels. The production of solar thermochemical fuels from water/carbon dioxide not only overcomes the intermittent nature of solar energy, but also allows for flexible transportation and distribution. In this paper, the challenges for solar thermochemical H2/CO production are reviewed. New perspectives and insights to overcome these challenges are presented. For two-step cycles, the main challenges are high temperatures, low conversions and the intensive oxygen removal work. Theoretically feasible temperature and pressure ranges are needed to develop reactant materials. The fundamental mechanism to reduce the temperature and the potential to improve the efficiency by minimizing the oxygen removal work need be revealed. Various material modification strategies and advanced reactors are proposed to improve the efficiency by reducing the temperature and enhancing heat transfer process. But the oxygen removal work required has not been minimized. For multi-step cycles, the main challenges are the separation of corrosive acid and insufficient reaction kinetics. For the separation of acids, many methods have been proposed. But these methods require extra energy and causes undesired side reactions or byproducts. The reaction kinetics have been enhanced by improving catalysts with noble materials or complex fabrication methods. Developing novel multi-step cycles using metal oxides, hydroxides and carbonates may be promising.

Funder

National Natural Science Foundation of China

Basic Science Center Program for Ordered Energy Conversion of the National Natural Science Foundation of China

Shanghai Jiao Tong University

Publisher

Springer Science and Business Media LLC

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3