Functional principal component analysis for incomplete space–time data

Author:

Palummo Alessandro,Arnone Eleonora,Formaggia Luca,Sangalli Laura M.

Abstract

AbstractEnvironmental signals, acquired, e.g., by remote sensing, often present large gaps of missing observations in space and time. In this work, we present an innovative approach to identify the main variability patterns, in space–time data, when data may be affected by complex missing data structures. We formalize the problem in the framework of functional data analysis, proposing an innovative method of functional principal component analysis (fPCA) for incomplete space–time data. The functional nature of the proposed method permits to borrow information from measurements observed at nearby spatio-temporal locations. The resulting functional principal components are smooth fields over the considered spatio-temporal domain, and can lead to interesting insights in the spatio-temporal dynamic of the phenomenon under study. Moreover, they can be used to provide a reconstruction of the missing entries, also under severe missing data patterns. The proposed model combines a weighted rank-one approximation of the data matrix with a roughness penalty. We show that the estimation problem can be solved using a majorize–minimization approach, and provide a numerically efficient algorithm for its solution. Thanks to a discretization based on finite elements in space and B-splines in time, the proposed method can handle multidimensional spatial domains with complex shapes, such as water bodies with complicated shorelines, or curved spatial regions with complex orography. As shown by simulation studies, the proposed space–time fPCA is superior to alternative techniques for Principal Component Analysis with missing data. We further highlight the potentiality of the proposed method for environmental problems, by applying space–time fPCA to the study of the lake water surface temperature (LWST) of Lake Victoria, in Central Africa, starting from satellite measurements with large gaps. LWST is considered one of the fundamental indicators of how climate change is affecting the environment, and is recognized as an essential climate variable.

Funder

Ministero dell'Università e della Ricerca

NextGenerationEU Programme, European Commission, and Italian Ministry of University and Research

Politecnico di Milano

Publisher

Springer Science and Business Media LLC

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3