Chemical characterisation is rough: the impact of topography and measurement parameters on energy-dispersive X-ray spectroscopy in biominerals

Author:

Shirley BryanORCID,Jarochowska EmiliaORCID

Abstract

AbstractEnergy dispersive X-ray microscopy (EDX) is a widely available, inexpensive method of characterizing the in-situ elemental composition of samples in Earth and life sciences. Common protocols and textbooks focussing on material sciences address EDX analysis of metallic samples that can be polished perfectly, whereas geoscientists often investigate specimens with prominent topography and composed of light, difficult to resolve elements. This is further compounded by the scarcity of literature surrounding the methodology of SEM–EDX in the field of palaeontology, leading to common misinterpretations and artefacts during data acquisition. Here, the common errors in elemental composition obtained with EDX arising from surface topography and from parameters subject to user decisions are quantified. As a model, fossil bioapatite (conodonts) and abiotic Durango apatite are used. It is shown that even microscale topography can distort measured composition by up to 34%, whereas topographic features such as tilt with respect to the electron beam lead to differences of up to 85%. Working distance was not the most important parameter affecting the results and led to differences in composition of up to 13%, whereas the choice of standard and its levelling with the sample surface led to inaccuracy reaching 33%. EDX results can be also affected by beam damage and the effects of acceleration voltage on sample acquisition and resolution are quantified. An estimate is provided of the severity of errors associated with samples which cannot satisfy preparation requirements for EDX fully, such as holotypes, and with user decisions. Using a palaeontological example, recommendations are offered for the best parameters and the relative importance of error sources are assessed.

Funder

Deutsche Forschungsgemeinschaft

Friedrich-Alexander-Universität Erlangen-Nürnberg

Publisher

Springer Science and Business Media LLC

Subject

Paleontology,Stratigraphy,Geology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3