Ultrastable Zn3N2 Thin Films via Integration of Amorphous GaN Protection Layers

Author:

Sirotti Elise12ORCID,Böhm Stefan12,Sharp Ian D.12ORCID

Affiliation:

1. Walter Schottky Institute Technical University of Munich 85748 Garching Germany

2. Physics Department TUM School of Natural Sciences Technical University of Munich 85748 Garching Germany

Abstract

AbstractZinc nitride (Zn3N2) is a promising semiconductor for a range of optoelectronic and energy conversion applications, offering a direct bandgap of 1.0 eV, large carrier mobilities, and abundant constituent elements. However, the material is prone to bulk oxidation in ambient environments, which has thus far impeded its practical deployment. While previous approaches have focused on stabilizing the material via integration of ZnO surface layers, these strategies introduce additional challenges regarding elevated processing temperatures and limited control of interface properties. In this study, it is shown that amorphous GaN thin films can serve as highly stable protection layers on Zn3N2 surfaces and can be deposited at the same growth temperature and in the same deposition system as the underlying semiconductor. The GaN‐capped Zn3N2 structures exhibit long‐term stability, surviving over 3 years of exposure to ambient conditions with no discernible alterations in composition, structure, or electrical properties. Notably, the amorphous GaN coatings can even impede Zn3N2 oxidation under prolonged aqueous exposure. Thus, this study offers a solution to stabilize Zn3N2 in ambient conditions, providing a viable pathway to its utilization in robust and high‐performance electronic devices, such as thin film transistors and solar energy conversion systems.

Funder

European Research Council

Solar Technologies go Hybrid

Bundesministerium für Bildung und Forschung

H2020 European Research Council

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3