Abstract
AbstractThe generation of active power in renewable energy is dependent on several factors. These variables are related to the areas of weather, physical structure, control, and load behavior. Estimating the future value of the active power to be generated is difficult due to their unpredictable character. However, because of the higher precision required of the estimation, this problem becomes more complex if we examine a short-term temporal prediction. This study presents a method for converting stochastic behavior into a stable pattern, which can subsequently be used in a short-term estimator. For this conversion, K-means clustering is employed, followed by Long-Short-Term Memory (LSTM) and Gated Recurrent Unit (GRU) algorithms to perform the Short-term estimate. The environment, the operation, and the generated (normal or faulty) signal are all simulated using mathematical models. Weather parameters and load samples have been collected as part of a dataset. Monte-Carlo simulation using MATLAB programming has been realized to conduct an experiment. In addition, the LSTM and the GRU are compared to see how well they perform in this system. The proposed method's end findings outperform the current state-of-the-art.
Publisher
Springer Science and Business Media LLC
Subject
Strategy and Management,Safety, Risk, Reliability and Quality
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献