Temporal forecasting by converting stochastic behaviour into a stable pattern in electric grid

Author:

Qashou AkramORCID,Yousef Sufian,Hazzaa Firas,Aziz Kahtan

Abstract

AbstractThe malfunction variables of power stations are related to the areas of weather, physical structure, control, and load behavior. To predict temporal power failure is difficult due to their unpredictable characteristics. As high accuracy is normally required, the estimation of failures of short-term temporal prediction is highly difficult. This study presents a method for converting stochastic behavior into a stable pattern, which can subsequently be used in a short-term estimator. For this conversion, K-means clustering is employed, followed by long-short-term memory and gated recurrent unit algorithms are used to perform the short-term estimation. The environment, the operation, and the generated signal factors are all simulated using mathematical models. Weather parameters and load samples have been collected as part of a dataset. Monte-Carlo simulation using MATLAB programming has been used to conduct experimental estimation of failures. The estimated failures of the experiment are then compared with the actual system temporal failures and found to be in good match. Therefore, to address the gap in knowledge for any future power grid estimated failures, the achieved results in this paper form good basis for a testbed to estimate any grid future failures.

Publisher

Springer Science and Business Media LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3