The role of rationality in integer-programming relaxations

Author:

Aprile ManuelORCID,Averkov Gennadiy,Di Summa Marco,Hojny ChristopherORCID

Abstract

AbstractFor a finite set $$X \subset \mathbb {Z}^d$$ X Z d that can be represented as $$X = Q \cap \mathbb {Z}^d$$ X = Q Z d for some polyhedron Q, we call Q a relaxation of X and define the relaxation complexity $${\text {rc}}(X)$$ rc ( X ) of X as the least number of facets among all possible relaxations Q of X. The rational relaxation complexity $${\text {rc}}_\mathbb {Q}(X)$$ rc Q ( X ) restricts the definition of $${\text {rc}}(X)$$ rc ( X ) to rational polyhedra Q. In this article, we focus on $$X = \Delta _d$$ X = Δ d , the vertex set of the standard simplex, which consists of the null vector and the standard unit vectors in $$\mathbb {R}^d$$ R d . We show that $${\text {rc}}(\Delta _d) \le d$$ rc ( Δ d ) d for every $$d \ge 5$$ d 5 . That is, since $${\text {rc}}_\mathbb {Q}(\Delta _d)=d+1$$ rc Q ( Δ d ) = d + 1 , irrationality can reduce the minimal size of relaxations. This answers an open question posed by Kaibel and Weltge (Math Program 154(1):407–425, 2015). Moreover, we prove the asymptotic statement $${\text {rc}}(\Delta _d) \in O(\nicefrac {d}{\sqrt{\log (d)}})$$ rc ( Δ d ) O ( d log ( d ) ) , which shows that the ratio $$\nicefrac {{\text {rc}}(\Delta _d)}{{\text {rc}}_\mathbb {Q}(\Delta _d)}$$ rc ( Δ d ) rc Q ( Δ d ) goes to 0, as $$d \rightarrow \infty $$ d .

Funder

Università degli Studi di Padova

Publisher

Springer Science and Business Media LLC

Subject

General Mathematics,Software

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Efficient MIP techniques for computing the relaxation complexity;Mathematical Programming Computation;2023-04-11

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3