Abstract
AbstractFor a setXof integer points in a polyhedron, the smallest number of facets of any polyhedron whose set of integer points coincides with Xis called the relaxation complexity $${{\,\mathrm{rc}\,}}(X)$$rc(X). This parameter, introduced by Kaibel & Weltge (2015), captures the complexity of linear descriptions of Xwithout using auxiliary variables. Using tools from combinatorics, geometry of numbers, and quantifier elimination, we make progress on several open questions regarding$${{\,\mathrm{rc}\,}}(X)$$rc(X)and its variant$${{\,\mathrm{rc}\,}}_\mathbb {Q}(X)$$rcQ(X), restricting the descriptions of Xto rational polyhedra. As our main results we show that$${{\,\mathrm{rc}\,}}(X) = {{\,\mathrm{rc}\,}}_\mathbb {Q}(X)$$rc(X)=rcQ(X)when: (a)Xis at most four-dimensional, (b)Xrepresents every residue class in$$(\mathbb {Z}/2\mathbb {Z})^d$$(Z/2Z)d, (c) the convex hull of Xcontains an interior integer point, or (d) the lattice-width of Xis above a certain threshold. Additionally,$${{\,\mathrm{rc}\,}}(X)$$rc(X)can be algorithmically computed when Xis at most three-dimensional, orXsatisfies one of the conditions (b), (c), or (d) above. Moreover, we obtain an improved lower bound on$${{\,\mathrm{rc}\,}}(X)$$rc(X)in terms of the dimension of X.
Funder
Schweizerischer Nationalfonds zur Förderung der Wissenschaftlichen Forschung
Publisher
Springer Science and Business Media LLC
Subject
General Mathematics,Software
Reference38 articles.
1. Applegate, D.L., Bixby, R.E., Chvátal, V., William, J.A.: Computational Study, Cook, The Traveling Salesman Problem. Princeton University Press, Princeton (2006)
2. Averkov, G.: A proof of Lovász’s theorem on maximal lattice-free sets. Beitr. Algebra Geom. 54(1), 105–109 (2013)
3. Averkov, G., Conforti, M., Del Pia, A., Di Summa, M., Faenza, Y.: On the convergence of the affine hull of the Chvátal-Gomory closures. SIAM J. Discrete Math. 27(3), 1492–1502 (2013)
4. Averkov, G., Krümpelmann, J., Nill, B.: Lattice simplices with a fixed positive number of interior lattice points: a nearly optimal. Bound. Int. Math. Res. Not 3, 2–47 (2018)
5. Averkov, G., Krümpelmann, J., Weltge, S.: Notions of maximality for integral lattice-free polyhedra: the case of dimension three. Math. Oper. Res. 42(4), 1035–1062 (2017)
Cited by
5 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献