Configuration balancing for stochastic requests

Author:

Eberle Franziska,Gupta Anupam,Megow Nicole,Moseley Benjamin,Zhou RudyORCID

Abstract

AbstractThe configuration balancing problem with stochastic requests generalizes well-studied resource allocation problems such as load balancing and virtual circuit routing. There are given m resources and n requests; each request has multiple possible configurations, each of which increases the load of each resource by some amount. The goal is to select one configuration for each request to minimize the makespan: the load of the most-loaded resource. In the stochastic setting, the amount by which a configuration increases the resource load is uncertain until the configuration is chosen, but we are given a probability distribution. We develop both offline and online algorithms for configuration balancing with stochastic requests. When the requests are known offline, we give a non-adaptive policy for configuration balancing with stochastic requests that $$O(\frac{\log m}{\log \log m})$$ O ( log m log log m ) -approximates the optimal adaptive policy, which matches a known lower bound for the special case of load balancing on identical machines. When requests arrive online in a list, we give a non-adaptive policy that is $$O(\log m)$$ O ( log m ) competitive. Again, this result is asymptotically tight due to information-theoretic lower bounds for special cases (e.g., for load balancing on unrelated machines). Finally, we show how to leverage adaptivity in the special case of load balancing on related machines to obtain a constant-factor approximation offline and an $$O(\log \log m)$$ O ( log log m ) -approximation online. A crucial technical ingredient in all of our results is a new structural characterization of the optimal adaptive policy that allows us to limit the correlations between its decisions.

Funder

Nederlandse Organisatie voor Wetenschappelijk Onderzoek

National Science Foundation

Publisher

Springer Science and Business Media LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3