Adaptive Bin Packing with Overflow

Author:

Perez-Salazar Sebastian1ORCID,Singh Mohit1ORCID,Toriello Alejandro1ORCID

Affiliation:

1. H. Milton Stewart School of Industrial and Systems Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332

Abstract

Motivated by bursty bandwidth allocation and by the allocation of virtual machines to servers in the cloud, we consider the online problem of packing items with random sizes into unit-capacity bins. Items arrive sequentially, but on arrival, an item’s actual size is unknown; only its probabilistic information is available to the decision maker. Without knowing this size, the decision maker must irrevocably pack the item into an available bin or place it in a new bin. Once packed in a bin, the decision maker observes the item’s actual size, and overflowing the bin is a possibility. An overflow incurs a large penalty cost, and the corresponding bin is unusable for the rest of the process. In practical terms, this overflow models delayed services, failure of servers, and/or loss of end-user goodwill. The objective is to minimize the total expected cost given by the sum of the number of opened bins and the overflow penalty cost. We present an online algorithm with expected cost at most a constant factor times the cost incurred by the optimal packing policy when item sizes are drawn from an independent and identically distributed (i.i.d.) sequence of unknown length. We give a similar result when item size distributions are exponential with arbitrary rates. We also study the offline model, where distributions are known in advance but must be packed sequentially. We construct a soft-capacity polynomial-time approximation scheme for this problem and show that the complexity of computing the optimal offline cost is [Formula: see text]-hard. Finally, we provide an empirical study of our online algorithm’s performance.

Publisher

Institute for Operations Research and the Management Sciences (INFORMS)

Subject

Management Science and Operations Research,Computer Science Applications,General Mathematics

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3