Characterization of matrices with bounded Graver bases and depth parameters and applications to integer programming

Author:

Briański Marcin,Koutecký Martin,Král’ Daniel,Pekárková KristýnaORCID,Schröder Felix

Abstract

AbstractAn intensive line of research on fixed parameter tractability of integer programming is focused on exploiting the relation between the sparsity of a constraint matrix A and the norm of the elements of its Graver basis. In particular, integer programming is fixed parameter tractable when parameterized by the primal tree-depth and the entry complexity of A, and when parameterized by the dual tree-depth and the entry complexity of A; both these parameterization imply that A is sparse, in particular, the number of its non-zero entries is linear in the number of columns or rows, respectively. We study preconditioners transforming a given matrix to a row-equivalent sparse matrix if it exists and provide structural results characterizing the existence of a sparse row-equivalent matrix in terms of the structural properties of the associated column matroid. In particular, our results imply that the $$\ell _1$$ 1 -norm of the Graver basis is bounded by a function of the maximum $$\ell _1$$ 1 -norm of a circuit of A. We use our results to design a parameterized algorithm that constructs a matrix row-equivalent to an input matrix A that has small primal/dual tree-depth and entry complexity if such a row-equivalent matrix exists. Our results yield parameterized algorithms for integer programming when parameterized by the $$\ell _1$$ 1 -norm of the Graver basis of the constraint matrix, when parameterized by the $$\ell _1$$ 1 -norm of the circuits of the constraint matrix, when parameterized by the smallest primal tree-depth and entry complexity of a matrix row-equivalent to the constraint matrix, and when parameterized by the smallest dual tree-depth and entry complexity of a matrix row-equivalent to the constraint matrix.

Funder

Masarykova Univerzita

H2020 European Research Council

Narodowe Centrum Nauki

Publisher

Springer Science and Business Media LLC

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Sparse Integer Programming Is Fixed-Parameter Tractable;Mathematics of Operations Research;2024-08-19

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3