A loose Benders decomposition algorithm for approximating two-stage mixed-integer recourse models

Author:

van der Laan NielsORCID,Romeijnders Ward

Abstract

AbstractWe propose a new class of convex approximations for two-stage mixed-integer recourse models, the so-called generalized alpha-approximations. The advantage of these convex approximations over existing ones is that they are more suitable for efficient computations. Indeed, we construct a loose Benders decomposition algorithm that solves large problem instances in reasonable time. To guarantee the performance of the resulting solution, we derive corresponding error bounds that depend on the total variations of the probability density functions of the random variables in the model. The error bounds converge to zero if these total variations converge to zero. We empirically assess our solution method on several test instances, including the SIZES and SSLP instances from SIPLIB. We show that our method finds near-optimal solutions if the variability of the random parameters in the model is large. Moreover, our method outperforms existing methods in terms of computation time, especially for large problem instances.

Funder

Nederlandse Organisatie voor Wetenschappelijk Onderzoek

Publisher

Springer Science and Business Media LLC

Subject

General Mathematics,Software

Reference38 articles.

1. Ahmed, S.: A scenario decomposition algorithm for 0–1 stochastic programs. Oper. Res. Lett. 41(6), 565–569 (2013)

2. Ahmed, S., Garcia, R., Kong, N., Ntaimo, L., Parija, G., Qiu, F., Sen, S.: SIPLIB: a stochastic integer programming test problem library. https://www2.isye.gatech.edu/~sahmed/siplib (2015)

3. Ahmed, S., Shapiro, A.: The sample average approximation method for stochastic programs with integer recourse. Preprint available from https://www.optimization-online.org (2002)

4. Bansal, M., Huang, K.L., Mehrotra, S.: Tight second stage formulations in two-stage stochastic mixed integer programs. SIAM J. Optim. 28(1), 788–819 (2018)

5. Bayraksan, G., Morton, D.P.: Assessing solution quality in stochastic programs. Math. Program. 108(2–3), 495–514 (2006)

Cited by 9 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3