Convex approximations of two-stage risk-averse mixed-integer recourse models

Author:

van Beesten E. RubenORCID,Romeijnders Ward,Roodbergen Kees Jan

Abstract

AbstractWe consider two-stage risk-averse mixed-integer recourse models with law invariant coherent risk measures. As in the risk-neutral case, these models are generally non-convex as a result of the integer restrictions on the second-stage decision variables and hence, hard to solve. To overcome this issue, we propose a convex approximation approach. We derive a performance guarantee for this approximation in the form of an asymptotic error bound, which depends on the choice of risk measure. This error bound, which extends an existing error bound for the conditional value at risk, shows that our approximation method works particularly well if the distribution of the random parameters in the model is highly dispersed. For special cases we derive tighter, non-asymptotic error bounds. Whereas our error bounds are valid only for a continuously distributed second-stage right-hand side vector, practical optimization methods often require discrete distributions. In this context, we show that our error bounds provide statistical error bounds for the corresponding (discretized) sample average approximation (SAA) model. In addition, we construct a Benders’ decomposition algorithm that uses our convex approximations in an SAA-framework and we provide a performance guarantee for the resulting algorithm solution. Finally, we perform numerical experiments which show that for certain risk measures our approach works even better than our theoretical performance guarantees suggest.

Funder

NWO

Publisher

Springer Science and Business Media LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3