System for monitoring road slippery based on CCTV cameras and convolutional neural networks

Author:

Grabowski Dariusz,Czyżewski AndrzejORCID

Abstract

AbstractThe slipperiness of the surface is essential for road safety. The growing number of CCTV cameras opens the possibility of using them to automatically detect the slippery surface and inform road users about it. This paper presents a system of developed intelligent road signs, including a detector based on convolutional neural networks (CNNs) and the transfer-learning method employed to the processing of images acquired with video cameras. Based on photos taken in different light conditions by CCTV cameras located at the roadsides in Poland, four network topologies have been trained and tested: Resnet50 v2, Resnet152 v2, Vgg19, and Densenet201. The last-mentioned network has proved to give the best result with 98.34% accuracy of classification dry, wet, and snowy roads.

Funder

NCBR

Publisher

Springer Science and Business Media LLC

Subject

Artificial Intelligence,Computer Networks and Communications,Hardware and Architecture,Information Systems,Software

Cited by 14 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Multi-Directional Long-Term Recurrent Convolutional Network for Road Situation Recognition;Sensors;2024-07-17

2. A Computer Vision-Based Framework for Snow Removal Operation Routing;IEEE Open Journal of Circuits and Systems;2024

3. ViSnow: Snow-Covered Urban Roads Dataset for Computer Vision Applications;IEEE Open Journal of Systems Engineering;2024

4. Unveiling Anomalies in Surveillance Videos Through Various Transfer Learning Models;2023 International Conference on Self Sustainable Artificial Intelligence Systems (ICSSAS);2023-10-18

5. Crevice Identification: A Survey on Surface Monitoring;2023 IEEE International Conference on Contemporary Computing and Communications (InC4);2023-04-21

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3