Abstract
AbstractThe slipperiness of the surface is essential for road safety. The growing number of CCTV cameras opens the possibility of using them to automatically detect the slippery surface and inform road users about it. This paper presents a system of developed intelligent road signs, including a detector based on convolutional neural networks (CNNs) and the transfer-learning method employed to the processing of images acquired with video cameras. Based on photos taken in different light conditions by CCTV cameras located at the roadsides in Poland, four network topologies have been trained and tested: Resnet50 v2, Resnet152 v2, Vgg19, and Densenet201. The last-mentioned network has proved to give the best result with 98.34% accuracy of classification dry, wet, and snowy roads.
Publisher
Springer Science and Business Media LLC
Subject
Artificial Intelligence,Computer Networks and Communications,Hardware and Architecture,Information Systems,Software
Cited by
14 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献