Multi-Directional Long-Term Recurrent Convolutional Network for Road Situation Recognition

Author:

Dofitas Cyreneo1ORCID,Gil Joon-Min2ORCID,Byun Yung-Cheol3ORCID

Affiliation:

1. Department of Electronic Engineering, Jeju National University, Jeju 63243, Republic of Korea

2. Department of Computer Engineering, Jeju National University, Jeju 63243, Republic of Korea

3. Department of Computer Engineering, Major of Electronic Engineering, Institute of Information Science & Technology, Jeju National University, Jeju 63243, Republic of Korea

Abstract

Understanding road conditions is essential for implementing effective road safety measures and driving solutions. Road situations encompass the day-to-day conditions of roads, including the presence of vehicles and pedestrians. Surveillance cameras strategically placed along streets have been instrumental in monitoring road situations and providing valuable information on pedestrians, moving vehicles, and objects within road environments. However, these video data and information are stored in large volumes, making analysis tedious and time-consuming. Deep learning models are increasingly utilized to monitor vehicles and identify and evaluate road and driving comfort situations. However, the current neural network model requires the recognition of situations using time-series video data. In this paper, we introduced a multi-directional detection model for road situations to uphold high accuracy. Deep learning methods often integrate long short-term memory (LSTM) into long-term recurrent network architectures. This approach effectively combines recurrent neural networks to capture temporal dependencies and convolutional neural networks (CNNs) to extract features from extensive video data. In our proposed method, we form a multi-directional long-term recurrent convolutional network approach with two groups equipped with CNN and two layers of LSTM. Additionally, we compare road situation recognition using convolutional neural networks, long short-term networks, and long-term recurrent convolutional networks. The paper presents a method for detecting and recognizing multi-directional road contexts using a modified LRCN. After balancing the dataset through data augmentation, the number of video files increased, resulting in our model achieving 91% accuracy, a significant improvement from the original dataset.

Funder

Ministry of Education

Publisher

MDPI AG

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3