Abstract
AbstractWe derive a novel thermodynamically consistent Navier–Stokes–Cahn–Hilliard system with dynamic boundary conditions. This model describes the motion of viscous incompressible binary fluids with different densities. In contrast to previous models in the literature, our new model allows for surface diffusion, a variable contact angle between the diffuse interface and the boundary, and mass transfer between bulk and surface. In particular, this transfer of material is subject to a mass conservation law including both a bulk and a surface contribution. The derivation is carried out by means of local energy dissipation laws and the Lagrange multiplier approach. Next, in the case of fluids with matched densities, we show the existence of global weak solutions in two and three dimensions as well as the uniqueness of weak solutions in two dimensions.
Funder
Deutsche Forschungsgemeinschaft
Ministero dell’Università e della Ricerca
Gruppo Nazionale per l’Analisi Matematica, la Probabilità e le loro Applicazioni
Publisher
Springer Science and Business Media LLC
Subject
Applied Mathematics,Computational Mathematics,Condensed Matter Physics,Mathematical Physics
Cited by
3 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献