Vapor-phase crystallization from a hydrous silicate melt: an experimental simulation of diktytaxitic texture

Author:

Sakurai RyosukeORCID,Nakamura MichihikoORCID,Okumura SatoshiORCID,Mujin MayumiORCID,Nakatani TakayukiORCID

Abstract

AbstractGroundmass textures of volcanic rocks provide valuable insights into the processes of magma ascent, crystallization, and eruption. The diktytaxitic texture, characterized by a lath-shaped arrangement of feldspar microlites forming glass-free and angular pores, is commonly observed in silicic dome-forming rocks and Vulcanian ashfall deposits. This texture has the potential to control the explosivity of volcanic eruptions because its micropore network allows pervasive degassing during the final stages of magma ascent and eruption. However, the exact conditions and kinetics of the formation of diktytaxitic textures, which are often accompanied by vapor-phase cristobalite, remain largely unknown. Here, we show that the diktytaxitic texture and vapor-phase minerals, cristobalite and alkali feldspar, can be produced from bulk-andesitic magma with rhyolitic glass under water-saturated, near-solidus conditions (± ~10 MPa and ± ~20 °C within the solidus; 10–20 MPa and 850 °C for our starting pumices). Such crystallization proceeds through the partial evaporation of the supercooled melt, followed by the deposition of cristobalite and alkali feldspar as a result of the system selecting the fastest crystallization pathway with the lowest activation energy. The previously proposed mechanisms of halogen-induced corrosion or melt segregation by gas-driven filter pressing are not particularly necessary, although they may occur concurrently. Diktytaxitic groundmass formation is completed within 4–8 days, irrespective of the presence or composition of the halogen. These findings constrain the outgassing of lava domes and shallow magma intrusions and provide new insights into the final stages of hydrous magma crystallization on Earth.

Funder

Japan Society for the Promotion of Science

The University of Tokyo

Publisher

Springer Science and Business Media LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3