Abstract
AbstractThe COVID-19 pandemic resulted in an upsurge in the spread of diverse conspiracy theories (CTs) with real-life impact. However, the dynamics of user engagement remain under-researched. In the present study, we leverage Twitter data across 11 months in 2020 from the timelines of 109 CT posters and a comparison group (non-CT group) of equal size. Within this approach, we used word embeddings to distinguish non-CT content from CT-related content as well as analysed which element of CT content emerged in the pandemic. Subsequently, we applied time series analyses on the aggregate and individual level to investigate whether there is a difference between CT posters and non-CT posters in non-CT tweets as well as the temporal dynamics of CT tweets. In this regard, we provide a description of the aggregate and individual series, conducted a STL decomposition in trends, seasons, and errors, as well as an autocorrelation analysis, and applied generalised additive mixed models to analyse nonlinear trends and their differences across users. The narrative motifs, characterised by word embeddings, address pandemic-specific motifs alongside broader motifs and can be related to several psychological needs (epistemic, existential, or social). Overall, the comparison of the CT group and non-CT group showed a substantially higher level of overall COVID-19-related tweets in the non-CT group and higher level of random fluctuations. Focussing on conspiracy tweets, we found a slight positive trend but, more importantly, an increase in users in 2020. Moreover, the aggregate series of CT content revealed two breaks in 2020 and a significant albeit weak positive trend since June. On the individual level, the series showed strong differences in temporal dynamics and a high degree of randomness and day-specific sensitivity. The results stress the importance of Twitter as a means of communication during the pandemic and illustrate that these beliefs travel very fast and are quickly endorsed.
Funder
GESIS – Leibniz-Institut für Sozialwissenschaften e.V.
Publisher
Springer Science and Business Media LLC
Subject
Applied Mathematics,Computational Theory and Mathematics,Computer Science Applications,Modeling and Simulation,Information Systems
Reference77 articles.
1. Douglas, K.M., Sutton, R.M., Cichocka, A.: The psychology of conspiracy theories. Curr. Dir. Psychol. Sci. 26, 538–542 (2017)
2. van Prooijen, J.-W., Van Vugt, M.: Conspiracy theories: evolved functions and psychological mechanisms. Perspect. Psychol. Sci. 13, 770–788 (2018)
3. Lin, Y., Margolin, D., Wen, X.: Tracking and analyzing individual distress following terrorist attacks using social media streams. Risk Anal. 37, 1580–1605 (2017)
4. Samory, M., Mitra, T.: Conspiracies online: user discussions in a conspiracy community following dramatic events. In: Proceedings of the International AAAI Conference on Web and Social Media (2018)
5. Hale, T., Petherick, A., Phillips, T., Webster, S.: Variation in government responses to COVID-19. Blavatnik Sch. Gov. Work. Pap. 31, 2020–2111 (2020)
Cited by
31 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献