Surgicberta: a pre-trained language model for procedural surgical language

Author:

Bombieri MarcoORCID,Rospocher Marco,Ponzetto Simone Paolo,Fiorini Paolo

Abstract

AbstractPre-trained language models are now ubiquitous in natural language processing, being successfully applied for many different tasks and in several real-world applications. However, even though there is a wealth of high-quality written materials on surgery, and the scientific community has shown a growing interest in the application of natural language processing techniques in surgery, a pre-trained language model specific to the surgical domain is still missing. The creation and public release of such a model would serve numerous useful clinical applications. For example, it could enhance existing surgical knowledge bases employed for task automation, or assist medical students in summarizing complex surgical descriptions. For this reason, in this paper, we introduce SurgicBERTa, a pre-trained language model specific for the English surgical language, i.e., the language used in the surgical domain. SurgicBERTa has been obtained from RoBERTa through continued pre-training with the Masked language modeling objective on 300 k sentences taken from English surgical books and papers, for a total of 7 million words. By publicly releasing SurgicBERTa, we make available a resource built from the content collected in many high-quality surgical books, online textual resources, and academic papers. We performed several assessments in order to evaluate SurgicBERTa, comparing it with the general domain RoBERTa. First, we intrinsically assessed the model in terms of perplexity, accuracy, and evaluation loss resulting from the continual training according to the masked language modeling task. Then, we extrinsically evaluated SurgicBERTa on several downstream tasks, namely (i) procedural sentence detection, (ii) procedural knowledge extraction, (iii) ontological information discovery, and (iv) surgical terminology acquisition. Finally, we conducted some qualitative analysis on SurgicBERTa, showing that it contains a lot of surgical knowledge that could be useful to enrich existing state-of-the-art surgical knowledge bases or to extract surgical knowledge. All the assessments show that SurgicBERTa better deals with surgical language than a general-purpose pre-trained language model such as RoBERTa, and therefore can be effectively exploited in many computer-assisted applications in the surgical domain.

Funder

HORIZON EUROPE European Research Council

Publisher

Springer Science and Business Media LLC

Subject

Applied Mathematics,Computational Theory and Mathematics,Computer Science Applications,Modeling and Simulation,Information Systems

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3