What can machines learn about heart failure? A systematic literature review

Author:

Jasinska-Piadlo A.ORCID,Bond R.ORCID,Biglarbeigi P.ORCID,Brisk R.ORCID,Campbell P.,McEneaneny D.ORCID

Abstract

AbstractThis paper presents a systematic literature review with respect to application of data science and machine learning (ML) to heart failure (HF) datasets with the intention of generating both a synthesis of relevant findings and a critical evaluation of approaches, applicability and accuracy in order to inform future work within this field. This paper has a particular intention to consider ways in which the low uptake of ML techniques within clinical practice could be resolved. Literature searches were performed on Scopus (2014-2021), ProQuest and Ovid MEDLINE databases (2014-2021). Search terms included ‘heart failure’ or ‘cardiomyopathy’ and ‘machine learning’, ‘data analytics’, ‘data mining’ or ‘data science’. 81 out of 1688 articles were included in the review. The majority of studies were retrospective cohort studies. The median size of the patient cohort across all studies was 1944 (min 46, max 93260). The largest patient samples were used in readmission prediction models with the median sample size of 5676 (min. 380, max. 93260). Machine learning methods focused on common HF problems: detection of HF from available dataset, prediction of hospital readmission following index hospitalization, mortality prediction, classification and clustering of HF cohorts into subgroups with distinctive features and response to HF treatment. The most common ML methods used were logistic regression, decision trees, random forest and support vector machines. Information on validation of models was scarce. Based on the authors’ affiliations, there was a median 3:1 ratio between IT specialists and clinicians. Over half of studies were co-authored by a collaboration of medical and IT specialists. Approximately 25% of papers were authored solely by IT specialists who did not seek clinical input in data interpretation. The application of ML to datasets, in particular clustering methods, enabled the development of classification models assisting in testing the outcomes of patients with HF. There is, however, a tendency to over-claim the potential usefulness of ML models for clinical practice. The next body of work that is required for this research discipline is the design of randomised controlled trials (RCTs) with the use of ML in an intervention arm in order to prospectively validate these algorithms for real-world clinical utility.

Funder

public health agency, health and social care trust, northern ireland

Publisher

Springer Science and Business Media LLC

Subject

Applied Mathematics,Computational Theory and Mathematics,Computer Science Applications,Modeling and Simulation,Information Systems

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3