1. Mehrmann, V., Miedlar, A., Nkengla, M., Friedland, S.: Fast low rank approximations of matrices and tensors. Electronic J. Linear Algebr. 22, 1031–1048 (2011)
2. Eldén, Lars.: Numerical linear algebra and applications in data mining and it. (2003)
3. Skillicorn, D.: Understanding complex datasets: data mining with matrix decompositions. Chapman and Hall, London (2007)
4. Murphy, K.P.: Machine learning: a probabilistic perspective. MIT press, Cambridge (2012)
5. Lee, J., Kim, S., Lebanon, G., Singer, Y.: Matrix approximation under local low-rank assumption. http://arxiv.org/abs/1301.3192, (2013)