Constrained Symmetric Non-Negative Matrix Factorization with Deep Autoencoders for Community Detection

Author:

Zhang Wei1,Yu Shanshan23,Wang Ling1,Guo Wei1,Leung Man-Fai4ORCID

Affiliation:

1. College of Electronic and Information Engineering, Southwest University, Chongqing 400715, China

2. Training and Basic Education Management Office, Southwest University, Chongqing 400715, China

3. Key Laboratory of Cyber-Physical Fusion Intelligent Computing (South-Central Minzu University), State Ethnic Affairs Commission, Wuhan 430074, China

4. School of Computing and Information Science, Faculty of Science and Engineering, Anglia Ruskin University, Cambridge CB1 1PT, UK

Abstract

Recently, community detection has emerged as a prominent research area in the analysis of complex network structures. Community detection models based on non-negative matrix factorization (NMF) are shallow and fail to fully discover the internal structure of complex networks. Thus, this article introduces a novel constrained symmetric non-negative matrix factorization with deep autoencoders (CSDNMF) as a solution to this issue. The model possesses the following advantages: (1) By integrating a deep autoencoder to discern the latent attributes bridging the original network and community assignments, it adeptly captures hierarchical information. (2) Introducing a graph regularizer facilitates a thorough comprehension of the community structure inherent within the target network. (3) By integrating a symmetry regularizer, the model’s capacity to learn undirected networks is augmented, thereby facilitating the precise detection of symmetry within the target network. The proposed CSDNMF model exhibits superior performance in community detection when compared to state-of-the-art models, as demonstrated by eight experimental results conducted on real-world networks.

Funder

Open Fund of the Key Laboratory of Cyber-Physical Fusion Intelligent Computing

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3