Mathematical model of the combustion process for turbojet engine based on fuel properties

Author:

Białecki TomaszORCID

Abstract

AbstractThis paper presents the impact of the alternative fuels properties on the parameters characterizing the combustion process in a turbojet engine, expressed in the form of a mathematical model. Laboratory tests, bench tests and a regression analysis of the obtained results were conducted. The developed and published combustion process models were briefly described. It has been demonstrated that these models were insufficient in taking into account the impact of fuel properties on the course of the combustion process. The experimental data enabled developing a mathematical model of the combustion process using statistical methods. The developed model, unlike other currently known models, takes into account the chemical composition of the fuel to a greater extent, which is characterized by its physicochemical properties. Mathematical model enables predicting engine operating parameters and the emissions characteristics, based on analysing laboratory test results, and can be used as a tool verifying the environmental impact of new fuels, through predicting the exhaust gas emissions.

Funder

Ministerstwo Nauki i Szkolnictwa Wyższego

Publisher

Springer Science and Business Media LLC

Subject

General Energy,Environmental Engineering

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3