Development of a day-ahead solar power forecasting model chain for a 250 MW PV park in India

Author:

Roy ArindamORCID,Ramanan Aravindakshan,Kumar Barun,Abraham Chris Alice,Hammer Annette,Barykina Elena,Heinemann Detlev,Kumar Naveen,Waldl Hans-Peter,Mitra Indradip,Das Prasun Kumar,Karthik R.,Boopathi K.,Balaraman K.

Abstract

AbstractDue to the steep rise in grid-connected solar Photovoltaic (PV) capacity and the intermittent nature of solar generation, accurate forecasts are becoming ever more essential for the secure and economic day-ahead scheduling of PV systems. The inherent uncertainty in Numerical Weather Prediction (NWP) forecasts and the limited availability of measured datasets for PV system modeling impacts the achievable day-ahead solar PV power forecast accuracy in regions like India. In this study, an operational day-ahead PV power forecast model chain is developed for a 250 MWp solar PV park located in Southern India using NWP-predicted Global Horizontal Irradiance (GHI) from the European Centre of Medium Range Weather Forecasts (ECMWF) and National Centre for Medium Range Weather Forecasting (NCMRWF) models. The performance of the Lorenz polynomial and a Neural Network (NN)-based bias correction method are benchmarked on a sliding window basis against ground-measured GHI for ten months. The usefulness of GHI transposition, even with uncertain monthly tilt values, is analyzed by comparing the Global Tilted Irradiance (GTI) and GHI forecasts with measured GTI for four months. A simple technique for back-calculating the virtual DC power is developed using the available aggregated AC power measurements and the inverter efficiency curve from a nearby plant with a similar rated inverter capacity. The AC power forecasts are validated against aggregated AC power measurements for six months. The ECMWF derived forecast outperforms the reference convex combination of climatology and persistence. The linear combination of ECMWF and NCMRWF derived AC forecasts showed the best result.

Funder

GIZ GmbH

Deutsches Zentrum für Luft- und Raumfahrt e. V. (DLR)

Publisher

Springer Science and Business Media LLC

Subject

General Energy,Environmental Engineering

Reference62 articles.

1. International Energy Agency: Renewables 2021. https://www.iea.org/reports/renewables-2021. Accessed 31 Dec 2022

2. Ministry of New and Renewable Energy: Physical Progress. https://mnre.gov.in/the-ministry/physical-progress. Accessed 31 Dec 2022

3. Government of India: India’s Updated Nationally Determined Contribution. https://pib.gov.in/PressReleaseIframePage.aspx?PRID=1847812. Accessed 31 Dec 2022

4. Perez, R., Lorenz, E., Pelland, S., Beauharnois, M., Van Knowe, G., Hemker, K., Heinemann, D., Remund, J., Müller, S.C., Traunmüller, W., Steinmauer, G., Pozo, D., Ruiz-Arias, J.A., Lara-Fanego, V., Ramirez-Santigosa, L., Gaston-Romero, M., Pomares, L.M.: Comparison of numerical weather prediction solar irradiance forecasts in the US, Canada and Europe. Sol. Energy 94, 305–326 (2013). https://doi.org/10.1016/j.solener.2013.05.005

5. Inman, R.H., Pedro, H.T.C., Coimbra, C.F.M.: Solar forecasting methods for renewable energy integration. Prog. Energy Combustion Sci. 39, 535–576 (2013)

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3