Abstract
AbstractIt is well-known that for a harmonic function u defined on the unit ball of the d-dimensional Euclidean space, d ≥ 2, the tangential and normal component of the gradient ∇u on the sphere are comparable by means of the Lp-norms, $p\in (1,\infty )$
p
∈
(
1
,
∞
)
, up to multiplicative constants that depend only on d,p. This paper formulates and proves a discrete analogue of this result for discrete harmonic functions defined on a discrete box on the d-dimensional lattice with multiplicative constants that do not depend on the size of the box.
Publisher
Springer Science and Business Media LLC
Reference22 articles.
1. Maergoiz, I.D.: Limits on the gradient of a harmonic function at the boundary of a domain. Translated from Sibirskii Matematicheskii Zhurnal 14(6), 1266–1284 (1973). Original article submitted April 18, 1972
2. Mikhlin, S.G.: Multidimensional Singular Integrals and Integrals Equations. Pergamon Press, Oxford (1965)
3. Bella, P., Fehrman, B., Otto, F.: A Liouville theorem for elliptic systems with degenerate ergodic coefficients. Ann. Appl. Probab. 28(3), 1379–1422 (2018)
4. Nguyen, T.A.: The random conductance model under degenerate conditions. Ph.D. Thesis, Technische Universität Berlin (2017)
5. Lewy, H., Friedrichs, K., Courant, R.: Über die partiellen Differenzengleichungen der mathematischen Physik. Math. Ann. 100, 32–74 (1928)