Toward BDS/Galileo/GPS/QZSS triple-frequency PPP instantaneous integer ambiguity resolutions without atmosphere corrections

Author:

Tao Jun,Chen Guo,Guo Jing,Zhang Qiang,Liu Sijing,Zhao Qile

Abstract

AbstractMulti-frequency precise point positioning (PPP) has drawn attention along with the modernization of the Global Navigation Satellite Systems. There are now nearly 90 satellites providing multi-frequency signals. This contribution aims to achieve fast convergence of a few seconds for BDS/Galileo/GPS/QZSS integrated triple-frequency PPP with integer ambiguity resolution (IAR) without atmosphere corrections. A unified model of an uncombined and undifferenced manner for PPP-IAR with dual- and triple-frequency observations is presented. The uncalibrated phase delays (UPD) of extra wide-lane (EWL), wide-lane (WL), and N1 ambiguities for triple-frequency PPP are estimated with standard deviations of 0.02, 0.05, and 0.10 cycles achieved, respectively. The PPP-IAR validation based on 20 stations evenly distributed in China is conducted using UPD products generated from a regional network covering a large part of China. The EWL, WL, and N1 ambiguities are sequentially fixed utilizing the least-squares ambiguity decorrelation adjustment (LAMBDA) technique. In terms of convergence time, PPP instantaneous IAR is achievable without using atmosphere corrections, thanks to the contribution of the multi-frequency and multi-constellation observations. This has been proved by performing PPP-IAR restart every 10-min over 2520 times in our case study. For PPP-IAR solutions produced with BDS/Galileo/GPS/QZSS triple-frequency observations with an interval of 1 s, the convergence is fulfilled within 1 s for the horizontal components with an accuracy of better than 5 cm, while 2 s for the vertical component with better than 10 cm accuracy, and both are at 95% confidence level.

Funder

National Natural Science Foundation of China

Fundamental Research Funds for the Central Universities

National Outstanding Youth Science Fund Project of National Natural Science Foundation of China

Publisher

Springer Science and Business Media LLC

Subject

General Earth and Planetary Sciences

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3