SVR and ARIMA models as machine learning solutions for solving the latency problem in real-time clock corrections

Author:

Qafisheh MutazORCID,Martín AngelORCID,Capilla Raquel M.,Anquela Ana B.ORCID

Abstract

AbstractReal-time precise point positioning (PPP) has become a prevalent technique in global navigation satellite systems (GNSS). However, GNSS real-time users must receive space state representation (SSR) products to correct for satellite clock, orbit, and phase biases. The International GNSS Service (IGS) provides GNSS users with real-time services (RTSs) through different real-time correction SSR products. These products arrive at the GNSS users with some latency, which affects the quality of real-time PPP positioning. The autoregressive integrated moving average (ARIMA) and support vector regression (SVR) models are used in this research to predict those corrections to eliminate the latency effect. ARIMA model reduces the standard deviation by 28% and 13% for GPS and GLONASS constellations, respectively, compared to the real-time solution, which includes the latency effect, the research simulated the latency effect and named it a forced-latency solution, and the SVR model reduces the standard deviation by 28% and 23% for GPS and GLONASS constellations, respectively. The results for the permanent GNSS stations used in this study across different years 2013, 2014, 2015, 2019, and 2021 show a mean reduction in the 3D positioning standard deviation by 13% compared with the forced-latency solution for the ARIMA solution and 9% for the SVR solution. The potential of both models to overcome the latency effect is apparent based on the findings.

Funder

Universidad Politècnica de València

Publisher

Springer Science and Business Media LLC

Subject

General Earth and Planetary Sciences

Reference51 articles.

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3