Adapting empirical solar radiation pressure model for BDS-3 medium Earth orbit satellites

Author:

Chen Xinghan,Ge Maorong,Liu Yang,He Lina,Schuh Harald

Abstract

AbstractFor the precise orbit determination (POD) of global navigation satellite systems (GNSS) constellation, it is very difficult to precisely model the solar radiation pressure (SRP) force acting on GNSS satellites. For GPS satellites, the ECOM model developed by the Center for Orbit Determination in Europe has been utilized by most of International GNSS Service (IGS) analysis centers. However, it should be adapted and optimized to the characteristics of satellites of each GNSS system or even individual satellites. It was extended to the ECOM2 model for GLONASS satellites and then for Galileo satellites by employing a box–wing model. Since November 2020, the third generation of the BeiDou satellite system (BDS-3) has been in its full operation and there are about 200 globally distributed IGS ground stations tracking BDS-3 signals, which creates a great potential to evaluate and optimize its SRP modeling. From the POD processing carried out in this study, we found significant fluctuations of up to 20 cm in overlapping orbit differences for satellites over eclipses in the radial direction and of about 20 and 50 cm in the cross and along directions for ECOM2 and ECOM models. Then, based on numerical analyses we demonstrate that the fourth- and sixth-order sine terms in the Sun direction can significantly reduce the overlapping orbit differences of ECOM. Therefore, an adapted SRP model by adding the fourth- and sixth-order sine periodical terms in the Sun direction to the ECOM model is presented. The adapted model is then validated for BDS-3 POD and orbit prediction. Results show that fluctuations in the amplitude of overlapping estimated orbits using ECOM models are reduced from 20 to < 10 cm in the radial-track component and satellite laser ranging residuals are reduced to half by the adapted SRP model. For the predicted BDS-3 satellite orbits, the RMS values over deep eclipses can be improved from about 7, 14 and 26 cm to about 3, 5 and 12 cm, in the radial, cross and along directions, respectively, compared to the ECOM model.

Funder

Projekt DEAL

Basic Scientific Fund for National Public Research Institutes of China

Helmholtz-Zentrum Potsdam Deutsches GeoForschungsZentrum - GFZ

Publisher

Springer Science and Business Media LLC

Subject

General Earth and Planetary Sciences

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3