Abstract
AbstractThe earth rotation parameters (ERPs) are time-variable global geodetic parameters with a purely geophysical origin. Theoretically, the estimates of these parameters should be independent of the satellite constellation used in GNSS processing. Nonetheless, clear differences in the time series of ERPs are noticed when using different GNSS constellations. In this study, GPS, GLONASS, and Galileo estimates of ERP have been extensively evaluated in search of system-specific signals. Some of the processing details, such as modeling of the direct solar radiation pressure and length of the orbital arc, also have an impact on the ERP estimates. The GPS-based polar motion estimates are of better quality than those based on GLONASS and Galileo, which are susceptible to deficiencies in the orbit modeling. On the other hand, we observe a systematic bias of GPS-based length-of-day (LoD) with respect to the IERS-C04-14 values with a mean offset of − 22.4 µs/day. The Galileo-based solutions are almost entirely free of this issue. The extension of the orbital arc in the GNSS processing from 1 to 3 days is superior for the quality of the ERPs, especially for pole coordinate rates and LoD. The spurious signals inherently influence the Galileo-based and GLONASS-based ERPs at the frequencies which arise from the resonance between the satellite revolution period and earth rotation, e.g., 3.4 days for Galileo and 3.9 days for GLONASS. These and the draconitic signals overshadow the GNSS-based ERP estimates. Although all the system-specific solutions are affected by the artificial signals, the combination of different GNSS mitigates most of the uncertainties and improves the ERP results.
Publisher
Springer Science and Business Media LLC
Subject
General Earth and Planetary Sciences
Reference48 articles.
1. Altamimi Z, Rebischung P, Métivier L, Collilieux X (2016) ITRF2014: a new release of the international terrestrial reference frame modeling nonlinear station motions. J Geophys Res Solid Earth 121(8):6109–6131. https://doi.org/10.1002/2016JB013098
2. Arnold D, Meindl M, Beutler G, Dach R, Schaer S, Lutz S, Prange L, Sośnica K, Mervart L, Jäggi A (2015) CODE’s new solar radiation pressure model for GNSS orbit determination. J Geod 89(8):775–791. https://doi.org/10.1007/s00190-015-0814-4
3. Beutler G, Brockmann E, Gurtner W, Hugentobler U, Mervart L, Rothacher M, Verdun A (1994) Extended orbit modeling techniques at the CODE processing center of the international GPS service for geodynamics (IGS): theory and initial results. Manuscr Geod 19:367–384
4. Bizouard C, Lambert S, Gattano C, Becker O, Richard J-Y (2018) The IERS EOP 14C04 solution for Earth orientation parameters consistent with ITRF 2014. J Geod 93:621–633. https://doi.org/10.1007/s00190-018-1186-3
5. Bury G, Zajdel R, Sośnica K (2019) Accounting for perturbing forces acting on Galileo using a box-wing model. GPS Solut 23(3):74. https://doi.org/10.1007/s10291-019-0860-0
Cited by
46 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献