System-specific systematic errors in earth rotation parameters derived from GPS, GLONASS, and Galileo

Author:

Zajdel RadosławORCID,Sośnica KrzysztofORCID,Bury GrzegorzORCID,Dach RolfORCID,Prange LarsORCID

Abstract

AbstractThe earth rotation parameters (ERPs) are time-variable global geodetic parameters with a purely geophysical origin. Theoretically, the estimates of these parameters should be independent of the satellite constellation used in GNSS processing. Nonetheless, clear differences in the time series of ERPs are noticed when using different GNSS constellations. In this study, GPS, GLONASS, and Galileo estimates of ERP have been extensively evaluated in search of system-specific signals. Some of the processing details, such as modeling of the direct solar radiation pressure and length of the orbital arc, also have an impact on the ERP estimates. The GPS-based polar motion estimates are of better quality than those based on GLONASS and Galileo, which are susceptible to deficiencies in the orbit modeling. On the other hand, we observe a systematic bias of GPS-based length-of-day (LoD) with respect to the IERS-C04-14 values with a mean offset of − 22.4 µs/day. The Galileo-based solutions are almost entirely free of this issue. The extension of the orbital arc in the GNSS processing from 1 to 3 days is superior for the quality of the ERPs, especially for pole coordinate rates and LoD. The spurious signals inherently influence the Galileo-based and GLONASS-based ERPs at the frequencies which arise from the resonance between the satellite revolution period and earth rotation, e.g., 3.4 days for Galileo and 3.9 days for GLONASS. These and the draconitic signals overshadow the GNSS-based ERP estimates. Although all the system-specific solutions are affected by the artificial signals, the combination of different GNSS mitigates most of the uncertainties and improves the ERP results.

Funder

Narodowe Centrum Nauki

Publisher

Springer Science and Business Media LLC

Subject

General Earth and Planetary Sciences

Cited by 46 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3