An effective automatic processing engine for improving the multi-GNSS constellation precise orbit prediction

Author:

Chen Xinghan,Ge Maorong,Zuo Xiang,Schuh Harald

Abstract

AbstractOrbit prediction (OP) recently tends to be a very crucial step for supporting real-time GNSS orbit services due to the dynamic stability of navigation satellite orbits. The OP performance depends on the length of the predicted orbits and the accuracy of precise orbit determination (POD) as basis. Considering this, a new automatic processing engine is established for improving the multiple global navigation satellite systems (multi-GNSS) constellation OP performance. From the architecture-oriented high-performance parallel processing perspective, the multi-node and multi-core computer sources are fully exploited to implement the hourly update of the current multi-GNSS POD. For MEO-type satellites (e.g., Galileo satellites), the accuracy of predicted orbits is improved from 3.8 cm, 6.5 cm, and 12.3 cm to 3.5 cm, 4.3 cm, and 6.3 cm, in the radial, cross, and along directions, respectively, compared to the three-hour POD update. Despite the shortened OP length, the OP performance of regional navigation satellite system (RNSS) satellites is still limited due to their regional observability. The BDS-IGSO and QZSS-IGSO satellitesexhibit radial directional orbital errors of up to 36.9 cm and 28.9 cm, respectively. Therefore, an orbit fitting (OF) processing method with orbit reconstruction is implemented into the processing engine. By utilizing this method, the radial orbital errors for BDS-IGSO and QZSS-IGSO satellites can be reduced to 7.0 cm and 10.4 cm, respectively. The mean real-time positioning errors are thus reduced from 28.3 to 18.4 cm and from 24.4 to 18.2 cm in the horizontal and vertical components, respectively.

Funder

DEAL

GFZ - HIPOS

Helmholtz-Zentrum Potsdam Deutsches GeoForschungsZentrum - GFZ

Publisher

Springer Science and Business Media LLC

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3