A new parallel algorithm for improving the computational efficiency of multi-GNSS precise orbit determination

Author:

Chen XinghanORCID,Ge Maorong,Hugentobler Urs,Schuh Harald

Abstract

AbstractThe computational efficiency is critical with the increasing number of GNSS satellites and ground stations since many unknown parameters must be estimated. Although only active parameters are kept in the normal equation in sequential least square estimation, the computational cost for parameter elimination is still a heavy burden. Therefore, it is necessary to optimize the procedure of parameter elimination to enhance the computational efficiency of GNSS network solutions. An efficient parallel algorithm is developed for accelerating parameter estimation based on modern multi-core processors. In the parallel algorithm, a multi-thread guided scheduling scheme, and cache memory traffic optimizations are implemented in parallelized sub-blocks for normal-equation-level operations. Compared with the traditional serial scheme, the computational time of parameter estimations can be reduced by a factor of three due to the new parallel algorithm using a six-core processor. Our results also confirm that the architecture of computers entirely limits the performance of the parallel algorithm. All the parallel optimizations are also investigated in detail according to the characteristics of CPU architecture. This gives a good reference to architecture-oriented parallel programming in the future development of GNSS software. The performance of the multi-thread parallel algorithm is expected to improve further with the upgrade of new multi-core coprocessors.s

Funder

Helmholtz-Zentrum Potsdam Deutsches GeoForschungsZentrum - GFZ

Publisher

Springer Science and Business Media LLC

Subject

General Earth and Planetary Sciences

Reference33 articles.

1. Amdahl GM (1967) Validity of the single processor approach to achieving large scale computing capabilities. In: Proceedings of the spring joint computer conference, April 18–20, pp 483–485, https://doi.org/10.1145/1465482.1465560

2. Asanovic K, et al (2006) The landscape of parallel computing research: a view from berkeley. EECS Department, University of California, Berkeley, Technical Report No. UCB/EECS-2006-183, December 18, 2006, https://www2.eecs.berkeley.edu/Pubs/TechRpts/2006/EECS-2006-183.pdf

3. Boomkamp H (2010) Global GPS reference frame solutions of unlimited size. Adv Space Res 46(2):136–143. https://doi.org/10.1016/j.asr.2010.02.015

4. Boomkamp H, König R (2004) Bigger, better, faster POD. In: Proceedings of IGS Workshop and symposium, 1–6 March 2004, Berne, Switzerland, 10(3): 3, ftp://192.134.134.6/pub/igs/igscb/resource/pubs/04_rtberne/cdrom/Session9/9_0_Boomkamp.pdf

5. Chen G, Herring TA (1997) Effects of atmospheric azimuthal asymmetry on the analysis of space geodetic data. J Geophys Res Solid Earth 102(B9):20489–20502. https://doi.org/10.1029/97JB01739

Cited by 10 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3