Modeling Soil Water Retention Under Different Pressures Using Adaptive Neuro-Fuzzy Inference System

Author:

Elbeltagi Ahmed,Jaiswal R. K.,Galkate R. V.,Kumar Manish,Lohani A. K.,Tyagi Jaiveer

Abstract

Abstract Soil Water Retention (SWR) is an important process in drainage, surface, and groundwater partitioning, hydrological modeling, water supply for irrigation, etc. Assessment of SWR characteristics is complex and difficult to conduct spatially in varied locations. Therefore, Pedotransfer Functions (PTF) which are empirical relations with easily available physical properties are commonly used. In the present study, the evaluation of soil moisture at different suction pressure using the adaptive neuro-fuzzy inference systems (ANFIS) approach based on soil texture (percentage of gravel, sand, silt, and clay) and compare with the PTF approach. The analysis was conducted for a total of eleven sites of two adjoining commands in India. The pressure plate apparatus along with coarse and fine sieve analysis, titration, and other tests were carried out to determine SWR, texture, organic carbon, and bulk density. The comparative analysis of Nash–Sutcliffe efficiencies of the best-fitted PTF models and ANFIS model confirmed that the ANFIS model can capture all variations of soil texture across all sites with Nash–Sutcliffe efficiency of nearly 1.0 indicative of an exact match, while no single PTF-based model can be used for all the sites. Therefore, the ANFIS model can be used to model soil water retention for the central India region using easily available texture properties of soils.

Funder

Mansoura University

Publisher

Springer Science and Business Media LLC

Subject

Water Science and Technology,Civil and Structural Engineering

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Neuro-fuzzy model for predicting insulin delivery from crosslinked agar-carbomer hydrogels;Computer Methods in Biomechanics and Biomedical Engineering;2024-06-07

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3