A Comparative Study of MLR, KNN, ANN and ANFIS Models with Wavelet Transform in Monthly Stream Flow Prediction
Author:
Publisher
Springer Science and Business Media LLC
Subject
Water Science and Technology,Civil and Structural Engineering
Link
http://link.springer.com/content/pdf/10.1007/s11269-019-02273-0.pdf
Reference60 articles.
1. Adamowski J, Chan HF, Prasher SO, Sharda VN (2012) Comparison of multivariate adaptive regression splines with coupled wavelet transform artificial neural networks for runoff forecasting in Himalayan micro-watersheds with limited data. J Hydroinf 14(3):731–744
2. Ahani A, Shourian M, Rad PR (2018) Performance assessment of the linear, nonlinear and nonparametric data driven models in river flow forecasting. Water Resour Manag 32(2):383–399
3. Alizadeh MJ, Kavianpour MR, Kisi O, Nourani V (2017) A new approach for simulating and forecasting the rainfall-runoff process within the next two months. J Hydrol 548:588–597
4. Aqil M, Kita I, Yano A, Nishiyama S (2007) A comparative study of artificial neural networks and neuro-fuzzy in continuous modeling of the daily and hourly behaviour of runoff. J Hydrol 337(1):22–34
5. Babovic V (2005) Data mining in hydrology. Hydrol Process 19(7):1511–1515
Cited by 120 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
1. Weighted error-output recurrent Xavier echo state network for concept drift handling in water level prediction;Applied Soft Computing;2024-11
2. Utilizing Artificial Intelligence Techniques for a Long–Term Water Resource Assessment in the ShihMen Reservoir for Water Resource Allocation;Water;2024-08-21
3. Evaluating machine learning models in predicting dam inflow and hydroelectric power production in multi-purpose dams (case study: Mahabad Dam, Iran);Applied Water Science;2024-08-20
4. Brahmaputra River (Pandu Station) Flow Prediction Using MLR, ANN, and RF Models Combined with Wavelet Transform;KSCE Journal of Civil Engineering;2024-08-06
5. Non-destructive inspection method for egg freshness evaluation via low-field nuclear magnetic resonance technology;Journal of Food Measurement and Characterization;2024-07-29
1.学者识别学者识别
2.学术分析学术分析
3.人才评估人才评估
"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370
www.globalauthorid.com
TOP
Copyright © 2019-2024 北京同舟云网络信息技术有限公司 京公网安备11010802033243号 京ICP备18003416号-3