Analysing the Impact of Land Subsidence on the Flooding Risk: Evaluation Through InSAR and Modelling

Author:

Navarro-Hernández María I.ORCID,Valdes-Abellan JavierORCID,Tomás RobertoORCID,Tessitore SerenaORCID,Ezquerro PabloORCID,Herrera GerardoORCID

Abstract

AbstractFloods greatly impact human settlements in flood risk areas, such as floodplains and coastal lowlands, following heavy rainfall. The Alto Guadalentin valley, an orogenic tectonic depression, experiences extreme flash floods and land subsidence due to groundwater withdrawal, rendering it one of Europe's fastest subsiding regions. In this study, we compared two 2D flood event models representing different land subsidence scenarios for 1992 and 2016. To determine the flooded area and water depth variations due to land subsidence, the Hydrologic Engineering Centre River Analysis System 2D (HEC-RAS 2D) model was used to simulate flood inundation by the Alto Guadalentin River and its tributaries. Synthetic aperture radar (SAR) satellite (ERS, ENVISAT, and Cosmo-SkyMED) images were employed, along with the interferometric SAR (InSAR) technique, to calculate the magnitude and spatial distribution of land subsidence. By analysing the accumulated subsidence distributions obtained from InSAR, the original topography of the valley in 1992 and 2016 was reconstructed. These digital surface models (DSMs) were then used to generate 2D hydraulic models, simulating flood scenarios in the unsteady mode. The results demonstrated significant changes in the water surface elevation over the 14-year period, with a 2.04 km2 increase in areas with water depths exceeding 0.7 m. These findings were utilized to create a flood risk map and assess the economic flood risk. The data highlight the crucial role of land subsidence in determining the inundation risk in the Alto Guadalentin valley, providing valuable insights for emergency management and civil protection against future potential flooding events.

Funder

HORIZON EUROPE Framework Programme

Universidad de Alicante

Publisher

Springer Science and Business Media LLC

Subject

Water Science and Technology,Civil and Structural Engineering

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3