European Multi Model Ensemble (EMME): A New Approach for Monthly Forecast of Precipitation
Author:
Publisher
Springer Science and Business Media LLC
Subject
Water Science and Technology,Civil and Structural Engineering
Link
https://link.springer.com/content/pdf/10.1007/s11269-021-03042-8.pdf
Reference32 articles.
1. Ababaei B (2020) Spatio-temporal variations of seven weather variables in iran: application of cru ts and gpcc data sets. Irrig Drain 69(1):164–185
2. Aksoy H, Dahamsheh A (2018) Markov chain-incorporated and synthetic data-supported conditional artificial neural network models for forecasting monthly precipitation in arid regions. J Hydrol 562:758–779
3. Azimi S, Moghaddam MA (2020) Modeling short term rainfall forecast using neural networks, and gaussian process classification based on the spi drought index. Water Resour Manage 1–37
4. Barnston AG, Tippett MK (2017) Do statistical pattern corrections improve seasonal climate predictions in the north american multimodel ensemble models? J Clim 30(20):8335–8355
5. Campozano L, Tenelanda D, Sanchez E, Samaniego E, Feyen J (2016) Comparison of statistical downscaling methods for monthly total precipitation: case study for the paute river basin in southern ecuador. Advances in Meteorology 2016
Cited by 11 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
1. Statistical Post-Processing for Precipitation Forecast Through Deep Learning Coupling Large-Scale and Local-Scale Spatiotemporal Information;Water Resources Management;2024-09-14
2. Monthly Precipitation Prediction Based on the CEEMDAN-BMA Model;Water Resources Management;2024-07-17
3. A hybrid approach for generating daily 2m temperature of 1km spatial resolution over Iran;Theoretical and Applied Climatology;2024-06-12
4. Assessing the effects of time series on precipitation forecasting performance from complexity perspective;Theoretical and Applied Climatology;2023-08-25
5. Spatially explicit modeling of disease surveillance in mixed oak-hardwood forests based on machine-learning algorithms;Journal of Environmental Management;2023-07
1.学者识别学者识别
2.学术分析学术分析
3.人才评估人才评估
"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370
www.globalauthorid.com
TOP
Copyright © 2019-2024 北京同舟云网络信息技术有限公司 京公网安备11010802033243号 京ICP备18003416号-3