Do Statistical Pattern Corrections Improve Seasonal Climate Predictions in the North American Multimodel Ensemble Models?

Author:

Barnston Anthony G.1,Tippett Michael K.2

Affiliation:

1. International Research Institute for Climate and Society, Columbia University, Palisades, New York

2. Department of Applied Physics and Applied Mathematics, Columbia University, New York, New York, and Center of Excellence for Climate Change Research, Department of Meteorology, King Abdulaziz University, Jeddah, Saudi Arabia

Abstract

Abstract Canonical correlation analysis (CCA)-based statistical corrections are applied to seasonal mean precipitation and temperature hindcasts of the individual models from the North American Multimodel Ensemble project to correct biases in the positions and amplitudes of the predicted large-scale anomaly patterns. Corrections are applied in 15 individual regions and then merged into globally corrected forecasts. The CCA correction dramatically improves the RMS error skill score, demonstrating that model predictions contain correctable systematic biases in mean and amplitude. However, the corrections do not materially improve the anomaly correlation skills of the individual models for most regions, seasons, and lead times, with the exception of October–December precipitation in Indonesia and eastern Africa. Models with lower uncorrected correlation skill tend to benefit more from the correction, suggesting that their lower skills may be due to correctable systematic errors. Unexpectedly, corrections for the globe as a single region tend to improve the anomaly correlation at least as much as the merged corrections to the individual regions for temperature, and more so for precipitation, perhaps due to better noise filtering. The lack of overall improvement in correlation may imply relatively mild errors in large-scale anomaly patterns. Alternatively, there may be such errors, but the period of record is too short to identify them effectively but long enough to find local biases in mean and amplitude. Therefore, statistical correction methods treating individual locations (e.g., multiple regression or principal component regression) may be recommended for today’s coupled climate model forecasts. The findings highlight that the performance of statistical postprocessing can be grossly overestimated without thorough cross validation or evaluation on independent data.

Funder

Climate Program Office

Publisher

American Meteorological Society

Subject

Atmospheric Science

Reference39 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3