Simulation with RBF Neural Network Model for Reservoir Operation Rules
Author:
Publisher
Springer Science and Business Media LLC
Subject
Water Science and Technology,Civil and Structural Engineering
Link
http://link.springer.com/content/pdf/10.1007/s11269-009-9569-0.pdf
Reference21 articles.
1. Ahmed JA, Sarma AK (2007) Artificial neural network model for synthetic stream flow generation. Water Resour Manage 21:1015–1029
2. Bhaskar NR, Whitlatch EE Jr (1980) Derivation of monthly reservoir release. Water Resour Res 16(6):987–993
3. Bower BT, Hufschmidt MM, Reedy WW (1966) Operating procedures: their role in the design of water-resource systems by simulation analyses. In: Maass A et al (eds) Design of water-resource systems. Harvard University Press, Cambridge, pp 443–458
4. Chandramouli V, Deka P (2005) Neural network based decision support model for optimal reservoir operation. Water Resour Manage 19:447–464
5. Chandramouli V, Raman H (2001) Multi reservoir modeling with dynamic programming and neural network. J Water Resour Plan Manage 127(3):89–98
Cited by 28 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
1. An Improved Aggregation–Decomposition Optimization Approach for Ecological Flow Supply in Parallel Reservoir Systems;Sustainability;2024-08-29
2. Enhancing interpretability of AI models in reservoir operation simulation: Exploring and mitigating principal inconsistencies through theory-guided multi-objective artificial neural networks;Journal of Hydrology;2024-08
3. Quantifying the contribution of uncertainty sources of artificial neural network models using ANOVA for reservoir power generation;Hydrology Research;2022-12-01
4. Study on the Optimal Operation of a Hydropower Plant Group Based on the Stochastic Dynamic Programming with Consideration for Runoff Uncertainty;Water;2022-01-12
5. Comparison of Self-Organizing Map, Artificial Neural Network, and Co-Active Neuro-Fuzzy Inference System Methods in Simulating Groundwater Quality: Geospatial Artificial Intelligence;Water Resources Management;2021-09-20
1.学者识别学者识别
2.学术分析学术分析
3.人才评估人才评估
"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370
www.globalauthorid.com
TOP
Copyright © 2019-2024 北京同舟云网络信息技术有限公司 京公网安备11010802033243号 京ICP备18003416号-3