Effects of Curcumin on Lipid Membranes: an EPR Spin-label Study
-
Published:2020-04-01
Issue:2
Volume:78
Page:139-147
-
ISSN:1085-9195
-
Container-title:Cell Biochemistry and Biophysics
-
language:en
-
Short-container-title:Cell Biochem Biophys
Author:
Duda Mariusz,Cygan Kaja,Wisniewska-Becker Anna
Abstract
AbstractCurcumin is a yellow–orange dye widely used as a spice, food coloring and food preservative. It also exhibits a broad range of therapeutic effects against different disorders such as cancer, diabetes, or neurodegenerative diseases. As a compound insoluble in water curcumin accumulates in cell membranes and due to this location it may indirectly lead to the observed effects by structurally altering the membrane environment. To exert strong structural effects on membrane curcumin needs to adopt a transbilayer orientation. However, there is no agreement in literature as to curcumin’s orientation and its structural effects on membranes. Here, we investigated the effects of curcumin on lipid order, lipid phase transition, and local polarity in a model liposome membranes made of DMPC or DSPC using electron paramagnetic resonance (EPR) spin labeling technique. Curcumin affected lipid order at different depths within the membrane: it slightly increased the phospholipid polar headgroup mobility as monitored by spectral parameters of T-PC, while along the acyl chain the ordering effect was observed in terms of order parameter S. Also, rotational correlation times τ2B and τ2C of 16-PC in the membrane center were increased by curcumin. Polarity measurements performed in frozen suspensions of liposomes revealed enhancement of water penetration by curcumin in the membrane center (16-PC) and in the polar headgroup region (T-PC) while the intermediate positions along the acyl chain (5-PC and 10-PC) were not significantly affected. Curcumin at a lower concentration (5 mol%) shifted the temperature of the DMPC main phase transition to lower values and increased the transition width, and at a higher concentration (10 mol%) abolished the transition completely. The observed effects suggest that curcumin adopts a transbilayer orientation within the membrane and most probably form oligomers of two molecules, each of them spanning the opposite bilayer leaflets. The effects are also discussed in terms of curcumin’s protective activity and compared with those imposed on membranes by other natural dyes known for their protective role, namely polar carotenoids, lutein and zeaxanthin.
Publisher
Springer Science and Business Media LLC
Subject
Cell Biology,Biochemistry,General Medicine,Biophysics
Reference42 articles.
1. Joe, B., Vijaykumar, M., & Lokesh, B. R. (2004). Biological properties of curcumin-cellular and molecular mechanisms of action. Critical Reviews in Food Science and Nutrition, 44(2), 97–111. 2. Maheshwari, R. K., Singh, A. K., Gaddipati, J., & Srimal, R. C. (2006). Multiple biological activities of curcumin: a short review. Life Science, 78(18), 2081–2087. 3. Hamaguchi, T., Ono, K., & Yamada, M. (2010). REVIEW: Curcumin and Alzheimer’s Disease. In CNS neuroscience therapy, 16(5), 285–297. 4. Hu, S., Maiti, P., Ma, Q., Zuo, X., Jones, M. R., Cole, G. M., & Frautschy, S. A. (2015). Clinical development of curcumin in neurodegenerative disease. Expert Review of Neurotherapeutics, 15(6), 629–637. 5. Salehi, B., Stojanović-Radić, Z., Matejić, J., Sharifi-Rad, M., Anil Kumar, N. V., Martins, N., & Sharifi-Rad, J. (2019). The therapeutic potential of curcumin: a review of clinical trials. European Journal of Medicinal Chemistry, 163, 527–545.
Cited by
32 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
|
|