Assessing the safety effect of red-light camera deactivation: a geographically weighted negative binomial regression approach

Author:

Li Jianling,da Silva Alan Ricardo

Abstract

AbstractMunicipalities across the country have debated the safety effect of automatic red-light cameras (RLC) and their political and financial implications. Most empirical studies have used the Empirical Bayesian (EB) approach to assess the safe effects to facilitate policy debates. While popular, the EB method has several limitations in data requirement, reference site selection, and control of confounding factors. Moreover, empirical studies of the RLC deactivation effects are limited. This study fills these gaps using the Moran’s I statistic and the Geographically Weighted Negative Binomial Regression (GWNBR) approach for data in the City of Arlington, Texas. The results indicate that the total, injury, and angle crashes in Arlington are on the rise over the study period and that crashes are higher at RLC deactivation intersections than those at other intersections. The direct safety effect of removing RLCs is statistically significant. The spillover effect is observed but statistically insignificant. Speed limit plays an important role in road safety. The findings have significant implications for safety research and practices.

Publisher

Springer Science and Business Media LLC

Subject

General Medicine

Reference47 articles.

1. Ahmed, M., & Abdel-Aty, M. (2015). Evaluation and spatial analysis of automated red-light running enforcement cameras. Transportation Research Part C, 50, 130–140. https://doi.org/10.1016/j.trc.2014.07.012

2. Anselin, L., Syabri, I., & Kho, Y. (2006). GeoDa: An Introduction to Spatial Data Analysis. Geographical Analysis, 38(1), 5–22.

3. Anselin, L. (2020). Distance-Band Spatial Weights. https://geodacenter.github.io/workbook/4b_dist_weights/lab4b.htmlBallotpedia, “City of Arlington Red Light Camera Ban, Proposition 1 (May 2015)” at https://ballotpedia.org/City_of_Arlington_Red_Light_Camera_Ban,_Proposition_1_(May_2015). Accessed 1 Jan 2019.

4. Ballotpedia. (2015). City of Arlington Red Light Camera Ban, Proposition 1 (May 2015). https://ballotpedia.org/City_of_Arlington_Red_Light_Camera_Ban,_Proposition_1_(May_2015). Accessed 1 Jan 2019.

5. Baratian-Ghorghi, F., Zhou, H., & Franco-Watkins, A. (2017). Effects of red light cameras on driver’s stop/go decision: Assessing the green extension hypothesis. Transportation Research Part F: Psychology and Behaviour, 46, 87–95. https://doi.org/10.1016/j.trf.2017.01.008

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3