NMR Study of Spin Dynamics in V7Zn and V7Ni Molecular Rings

Author:

Adelnia F.,Arosio P.,Mariani M.,Orsini F.,Radaelli A.,Sangregorio C.,Borsa F.,Walsh J. P. S.,Winpenny R.,Timco G.,Lascialfari A.

Abstract

AbstractWe present a 1H NMR investigation of spin dynamics in two finite integer spin molecular nanomagnetic rings, namely V7Zn and V7Ni. This study could be put in correlation with the problem of Haldane gap in infinite integer spin chains. While V7Zn is an approximation of a homometallic broken chain due to the presence of s = 0 Zn2+ ion uncoupled from nearest neighbor V2+s = 1 ions, the V7Ni compound constitutes an example of a closed periodical s = 1 heterometallic chain. From preliminary susceptibility measurements on single crystals and data analysis, the exchange coupling constant J/kB results in the order of few kelvin. At room temperature, the frequency behavior of the 1H NMR spin–lattice relaxation rate 1/T1 allowed to conclude that the spin–spin correlation function is similar to the one observed in semi-integer spin molecules, but with a smaller cutoff frequency. Thus, the high-T data can be interpreted in terms of, e.g., a Heisenberg model including spin diffusion. On the other hand, the behavior of 1/T1 vs temperature at different constant fields reveals a clear peak at temperature of the order of J/kB, qualitatively in agreement with the well-known Bloembergen–Purcell–Pound model and with previous results on semi-integer molecular spin systems. Consequently, one can suggest that for a small number N of interacting s = 1 ions (N = 8), the Haldane conjecture does not play a key role on spin dynamics, and the investigated rings still keep the quantum nature imposed mainly by the low number of magnetic centers, with no clear topological effect due to integer spins.

Funder

Università degli Studi di Pavia

Publisher

Springer Science and Business Media LLC

Subject

Atomic and Molecular Physics, and Optics

Reference40 articles.

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3