What is in the KGQA Benchmark Datasets? Survey on Challenges in Datasets for Question Answering on Knowledge Graphs

Author:

Steinmetz NadineORCID,Sattler Kai-Uwe

Abstract

AbstractQuestion Answering based on Knowledge Graphs (KGQA) still faces difficult challenges when transforming natural language (NL) to SPARQL queries. Simple questions only referring to one triple are answerable by most QA systems, but more complex questions requiring complex queries containing subqueries or several functions are still a tough challenge within this field of research. Evaluation results of QA systems therefore also might depend on the benchmark dataset the system has been tested on. For the purpose to give an overview and reveal specific characteristics, we examined currently available KGQA datasets regarding several challenging aspects. This paper presents a detailed look into the datasets and compares them in terms of challenges a KGQA system is facing.

Funder

Deutsche Forschungsgemeinschaft

Publisher

Springer Science and Business Media LLC

Subject

Artificial Intelligence,Computer Networks and Communications,Information Systems

Reference13 articles.

1. Affolter K, Stockinger K, Bernstein A (2019) A comparative survey of recent natural language interfaces for databases. CoRR, abs/1906.08990,

2. Auer S, Bizer C, Kobilarov G, Lehmann J, Cyganiak R, Ives Z (2007) Dbpedia: A nucleus for a web of open data. In: Aberer K, Choi K-S, Noy N, Allemang D, Lee K-Il, Nixon L, Golbeck J, Mika P, Maynard D, Mizoguchi R, Schreiber G, and Cudré-Mauroux P (eds) The Semantic Web, pp 722–735, Berlin, Heidelberg, Springer Berlin Heidelberg. ISBN 978-3-540-76298-0

3. Azmy M, Shi P, Lin J, Ilyas I (2018) Farewell freebase: Migrating the simplequestions dataset to dbpedia. In: Proceedings of the 27th international conference on computational linguistics, pp 2093–2103

4. Bouziane A, Bouchiha D, Doumi N, Malki M (2015) Question answering systems: Survey and trends. Procedia Comput Sci, 73:366 – 375, 2015. ISSN 1877-0509. https://doi.org/10.1016/j.procs.2015.12.005. http://www.sciencedirect.com/science/article/pii/S1877050915034663. International Conference on Advanced Wireless Information and Communication Technologies (AWICT 2015)

5. Brown TB, Mann B, Ryder N, Subbiah M, Kaplan J, Dhariwal P, Neelakantan A, Shyam P, Sastry G, Askell A, Agarwal S, Herbert-Voss A, Krueger G, Henighan T, Child R, Ramesh A, Ziegler DM, Wu J, Winter C, Hesse C, Chen M, Sigler E, Litwin M, Gray S, Chess B, Clark J, Berner C, McCandlish S, Radford A, Sutskever I, Amodei D (2020) Language models are few-shot learners

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Chinese mineral question and answering system based on knowledge graph;Expert Systems with Applications;2023-11

2. KGrEaT: A Framework to Evaluate Knowledge Graphs via Downstream Tasks;Proceedings of the 32nd ACM International Conference on Information and Knowledge Management;2023-10-21

3. Entity Linking for KGQA Using AMR Graphs;The Semantic Web;2023

4. Knowledge Graph Question Answering Datasets and Their Generalizability;Proceedings of the 45th International ACM SIGIR Conference on Research and Development in Information Retrieval;2022-07-06

5. A better entity detection of question for knowledge graph question answering through extracting position-based patterns;Journal of Big Data;2022-06-17

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3