Natural Feature-based Visual Servoing for Grasping Target with an Aerial Manipulator

Author:

Luo Bin,Chen Haoyao,Quan Fengyu,Zhang Shiwu,Liu Yunhui

Abstract

AbstractAerial transportation and manipulation have attracted increasing attention in the unmanned aerial vehicle field, and visual servoing methodology is widely used to achieve the autonomous aerial grasping of a target object. However, the existing marker-based solutions pose a challenge to the practical application of target grasping owing to the difficulty in attaching markers on targets. To address this problem, this study proposes a novel image-based visual servoing controller based on natural features instead of artificial markers. The natural features are extracted from the target images and further processed to provide servoing feature points. A six degree-of-freedom (6-DoF) aerial manipulator system is proposed with differential kinematics deduced to achieve aerial grasping. Furthermore, a controller is designed when the target object is outside a manipulator’s workspace by utilizing both the degrees-of-freedom of unmanned aerial vehicle and manipulator joints. Thereafter, a weight matrix is used as basis to develop a multi-tasking visual servoing framework to integrate the controllers inside and outside the manipulator’s workspace. Lastly, experimental results are provided to verify the effectiveness of the proposed approach.

Publisher

Springer Science and Business Media LLC

Subject

Bioengineering,Biophysics,Biotechnology

Cited by 13 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Prototype, Modeling, and Control of Aerial Robots With Physical Interaction: A Review;IEEE Transactions on Automation Science and Engineering;2024

2. Image-Based Aerial Grasping of a Moving Target Using Model Predictive Control;NODYCON Conference Proceedings Series;2024

3. Vision-Guided Hierarchical Control and Autonomous Positioning for Aerial Manipulator;Applied Sciences;2023-11-09

4. Autonomous Marker-Less Rapid Aerial Grasping;2023 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS);2023-10-01

5. Image-Based Visual Servo Control for Aerial Manipulation Using a Fully-Actuated UAV;2023 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS);2023-10-01

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3