Research on Material and Morphological Structure of Venus Flytrap Trigger Hair

Author:

Wang Qian,Xu Kun,Fan Cheng,Sun Lining,Zhang Lei,Wang Kejun

Abstract

AbstractVenus flytrap can sense the very small insects that touch its tactile receptors, known as trigger hairs, and thus capture prey to maintain its nutrient demand. However, there are few studies on the trigger hair and its morphological structure and material properties are not fully understood. In this study, the trigger hair is systematically characterized with the help of different instruments. Results show that trigger hair is a special cantilever beam structure and it has a large longitudinal diameter ratio. Besides, it is composed of a hair lever and a basal podium, and there is a notch near the hair base. The cross-section of the trigger hair is approximately a honeycomb structure, which is composed of many holes. Methods to measure mechanical properties of trigger hair are introduced in this paper. Based on the mechanical tests, trigger hair proved to be a variable stiffness structure and shows a high sensitivity to the external force. These features can provide supports for the understanding of the high-sensitivity sensing mechanism of trigger hairs from the perspective of structure and material, and offer inspirations for the development of high-performance tactile sensors.

Publisher

Springer Science and Business Media LLC

Subject

Bioengineering,Biophysics,Biotechnology

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3