Biomechanics on Ultra‐Sensitivity of Venus Flytrap's Micronewton Trigger Hairs

Author:

Wang Kejun1,Chen Siyuan1,Bao Guanyu1,Sun Tao2,Zhang Junqiu2,Chen Daobing3,Sun Lining1,Han Zhiwu2,Liu Chao1,Wang Qian1ORCID

Affiliation:

1. Jiangsu Provincial Key Laboratory of Advanced Robotics Soochow University Suzhou 215123 P. R. China

2. Key Laboratory of Bionic Engineering Ministry of Education Jilin University Changchun 130022 P. R. China

3. The Institute of Technological Science Wuhan University Wuhan 430072 P. R. China

Abstract

AbstractNumerous plants evolve ingeniously microcantilever‐based hairs to ultra‐sensitively detect out‐of‐plane quasi‐static tactile loads, providing a natural blueprint for upgrading the industrial static mode microcantilever sensors, but how do the biological sensory hairs work mechanically? Here, the action potential‐producing trigger hairs of carnivorous Venus flytraps (Dionaea muscipula) are investigated in detail from biomechanical perspective. Under tiny mechanical stimulation, the deformable trigger hair, composed of distal stiff lever and proximal flexible podium, will lead to rapid trap closure and prey capture. The multiple features determining the sensitivity such as conical morphology, multi‐scale functional structures, kidney‐shaped sensory cells, and combined deformation under tiny mechanical stimulation are comprehensively researched. Based on materials mechanics, finite element simulation, and bio‐inspired original artificial sensors, it is verified that the omnidirectional ultra‐sensitivity of trigger hair is attributed to the stiff‐flexible coupling of material, the double stress concentration, the circular distribution of sensory cells, and the positive local buckling. Also, the balance strategy of slender hair between sensitivity and structural stability (i.e., avoiding disastrous collapse) is detailed revealed. The unique basic biomechanical mechanism underlying trigger hairs is essential for significantly enhancing the performance of the traditional industrial static mode microcantilever sensors, and ensure the stability of arbitrary load perception.

Funder

National Natural Science Foundation of China

Natural Science Foundation of Jiangsu Province

Innovative Research Group Project of the National Natural Science Foundation of China

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3