Integral Real-time Locomotion Mode Recognition Based on GA-CNN for Lower Limb Exoskeleton

Author:

Wang Jiaqi,Wu Dongmei,Gao Yongzhuo,Wang Xinrui,Li Xiaoqi,Xu Guoqiang,Dong WeiORCID

Abstract

AbstractThe wearable lower limb exoskeleton is a typical human-in-loop human–robot coupled system, which conducts natural and close cooperation with the human by recognizing human locomotion timely. Requiring subject-specific training is the main challenge of the existing approaches, and most methods have the problem of insufficient recognition. This paper proposes an integral subject-adaptive real-time Locomotion Mode Recognition (LMR) method based on GA-CNN for a lower limb exoskeleton system. The LMR method is a combination of Convolutional Neural Networks (CNN) and Genetic Algorithm (GA)-based multi-sensor information selection. To improve network performance, the hyper-parameters are optimized by Bayesian optimization. An exoskeleton prototype system with multi-type sensors and novel sensing-shoes is used to verify the proposed method. Twelve locomotion modes, which composed an integral locomotion system for the daily application of the exoskeleton, can be recognized by the proposed method. According to a series of experiments, the recognizer shows strong comprehensive abilities including high accuracy, low delay, and sufficient adaption to different subjects.

Funder

The Pre-research project in the manned space field

Publisher

Springer Science and Business Media LLC

Subject

Bioengineering,Biophysics,Biotechnology

Reference47 articles.

1. Mo, F. H., Zhang, Q., Zhang, H. T., Long, J. J., Wang, Y. L., Chen, G., & Ye, J. (2021). A simulation-based framework with a proprioceptive musculoskeletal model for evaluating the rehabilitation exoskeleton system. Computer Methods and Programs in Biomedicine, 208, 106270.

2. Lerner, Z. F., Damiano, D. L., & Bulea, T. C. (2017). A lower-extremity exoskeleton improves knee extension in children with crouch gait from cerebral palsy. Science Translational Medicine, 9(404), 9145.

3. Huo, W., Mohammed, S., Amirat, Y., & Kong, K. (2018). Fast gait mode detection and assistive torque control of an exoskeletal robotic orthosis for walking assistance. IEEE Transactions on Robotics, 34(4), 1035–1052.

4. Chen, C. F., Du, Z. J., He, L., Shi, Y. J., Wang, J. Q., & Dong, W. (2021). A novel gait pattern recognition method based on LSTM-CNN for lower limb exoskeleton. Journal of Bionic Engineering, 18(5), 1059–1072.

5. Zheng, T., Zhu, Y., Zhang, Z., Zhao, S., Chen, J., & Zhao, J. (2018). Parametric gait online generation of a lower-limb exoskeleton for individuals with paraplegia. Journal of Bionic Engineering, 15(6), 941–949.

Cited by 52 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3