A Passive Anti-icing Strategy Based on a Superhydrophobic Mesh with Extremely Low Ice Adhesion Strength

Author:

Wang Peng,Li Ziqiang,Xie Qing,Duan Wei,Zhang Xinchun,Han Huilong

Abstract

AbstractAlthough superhydrophobic materials have attracted much research interest in anti-icing, some controversy still exists. In this research, we report a cost-effective method used to verify the contribution of area fraction to ice adhesion strength. We tried to partially-embed silica nanoparticles into microscale fabrics of a commercial polyamide mesh. Then, the area fraction could be determined by altering the mesh size. Generally, the ice adhesion strength decreases as the area fraction decreases. An ice adhesion strength of ∼1.9 kPa and a delayed freezing time of ∼1048 s can be obtained. We attribute the low ice adhesion strength to the combination of superhydrophobicity and stress concentration. The superhydrophobicity prohibits the water from penetrating into the voids of the meshes, and the small actual contact area leads to stress concentration which promotes interfacial crack propagation. Moreover, our superhydrophobic mesh simultaneously exhibits a micro-nano hierarchical structure and a partially-embedded structure. Therefore, the as-prepared superhydrophobic mesh retained the icephobicity after 20 icing/deicing cycles, and maintained its superhydrophobicity even after 60 sandpaper-abrasion cycles and a 220 °C thermal treatment.

Publisher

Springer Science and Business Media LLC

Subject

Bioengineering,Biophysics,Biotechnology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3