Biomimetic lubricant-grafted surfaces on laser-textured microwell arrays with multifunctionality

Author:

Song Xiaorui,Hou Zhiqiang,Gan Zhehao,Hu Yuyao,Zheng Hongyu,Wu Yongling,Liu Mingming

Abstract

AbstractRecently, various slippery liquid-infused porous surfaces (SLIPS) have been fabricated for the protection of various materials. However, these SLIPSs are limited by their underlying storage structure and superficial lubricant layer, showing poor durability. Herein, inspired by the high-strength structure of Shell nacre’s “brick-mud” layer, we fabricated an all-inorganic composite coating by using wet chemically etched MXene as a brick and an aluminum phosphate binder (AP) as mud. Then, a series of microwell-array structures were designed and prepared on the coating via nanosecond ultrafast laser writing ablation technology. Subsequently, the textured surface was modified by a silane coupling agent. Vinyl-terminated polydimethylsiloxane (PDMS) was tightly grafted onto the porous surface through a thiol-ene click reaction to obtain lubricant grafted texture surface (LGTS). The prepared LGTS showed good lubrication properties for multiple phases, including various liquids, ice crystals, and solids. It exhibits excellent chemical stability and mechanical durability under deionized water impact, centrifugal test, strong acid solutions, anti/de-icing cycles, and high-intensity friction. Thus, the proposed strategy for constructing robust LGTS will greatly promote theoretical research on super wetting interfacial materials and their applications in the fields of antifouling, anti/de-icing, and lubricating protection.

Publisher

Springer Science and Business Media LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3