A Bionic Starfish Adsorption Crawling Soft Robot

Author:

Huang Xiangang,Zhang Chenghao,Feng Wenqi,Zhang Xiangye,Zhang Deyuan,Liu YanqiangORCID

Abstract

AbstractA variety of soft wall-climbing robots have been developed that can move in certain patterns. Most of these soft robots can only move on conventional surfaces and lack adaptability to complex surfaces. Improving the adaptability of soft robots on complex surfaces is still a challenging problem. To this end, we study the layered structure of the starfish tube foot and the valve flap structure in the water vascular system, and use an ultrasonic stress detector to study the stiffness distribution of the arm structure. Inspired by the motion of the starfish, we present a bionic soft wall-climbing robot, which is driven by two groups of pneumatic feet and achieves body bending through active adaptation layers. We design the structure of the foot to flex to provide driving force, and there are suction cups at the end of the foot to provide suction. The soft foot has a simple structure design, adapts to a variety of surfaces, and does not damage the surface of the substrate. Variable stiffness layers achieve stiffness changes by the principle of line blocking. The Central Pattern Generator theory is introduced to coordinately control the multiple feet of the robot. After experiments, we verify the adaptability of the soft robot to curved surfaces. The research may provide a reference for the design and development of crawling soft robots on complex surfaces.

Publisher

Springer Science and Business Media LLC

Subject

Bioengineering,Biophysics,Biotechnology

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3