New Emerging Inorganic–Organic Systems for Drug-Delivery: Hydroxyapatite@Furosemide Hybrids

Author:

La Rocca Marzia,Rinaldi Alessia,Bruni Giovanna,Friuli Valeria,Maggi Lauretta,Bini MarcellaORCID

Abstract

AbstractIn the pharmaceutical market, the need to find effective systems for the efficient release of poorly bioavailable drugs is a forefront topic. The inorganic–organic hybrid materials have been recognized as one of the most promising systems. In this paper, we developed new Hydroxypapatite@Furosemide hybrids with improved dissolution rates in different media with respect to the drug alone. The hybrids formation was demonstrated by SEM/EDS measurements (showing homogeneous distribution of the elements) and FT-IR spectroscopy. The drug was adsorbed onto hydroxyapatite surfaces in amorphous form, as demonstrated by XRPD and its thermal stability was improved due to the absence, in the hybrids, of melting and decomposition peaks typical of the drug. The Sr substitution on Ca sites in hydroxyapatite allows increasing the surface area and pore volume, foreseeing a high capacity of drug loading. The dissolution tests of the hybrid compounds show dissolution rates much faster than the drug alone in different fluids, and also their solubility and wetting ability is improved in comparison to furosemide alone.

Publisher

Springer Science and Business Media LLC

Subject

Materials Chemistry,Polymers and Plastics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3